Reduced Gorenstein codimension three subschemes of projective space
نویسندگان
چکیده
منابع مشابه
Some Examples of Gorenstein Liaison in Codimension Three
Gorenstein liaison seems to be the natural notion to generalize to higher codimension the well-known results about liaison o varieties of codimension 2 in projective space. In this paper we study points in P and cuves in P in an attempt to see how far typical codimension 2 results will extend. While the results are satisfactory for small degree, we find in each case examples where we cannot dec...
متن کاملAn Improved Multiplicity Conjecture for Codimension Three Gorenstein Algebras
The Multiplicity Conjecture is a deep problem relating the multiplicity (or degree) of a Cohen-Macaulay standard graded algebra with certain extremal graded Betti numbers in its minimal free resolution. In the case of level algebras of codimension three, Zanello has proposed a stronger conjecture. We prove this conjecture for the case of codimension three graded Gorenstein algebras.
متن کاملLagrangian Subbundles and Codimension 3 Subcanonical Subschemes
We show that a Gorenstein subcanonical codimension 3 subscheme Z ⊂ X = P , N ≥ 4, can be realized as the locus along which two Lagrangian subbundles of a twisted orthogonal bundle meet degenerately, and conversely. We extend this result to singular Z and all quasiprojective ambient schemes X under the necessary hypothesis that Z is strongly subcanonical in a sense defined below. A central point...
متن کاملLiaison Addition and the Structure of a Gorenstein Liaison Class
We study the concept of liaison addition for codimension two subschemes of an arithmetically Gorenstein projective scheme. We show how it relates to liaison and biliaison classes of subschemes and use it to investigate the structure of Gorenstein liaison equivalence classes, extending the known theory for complete intersection liaison of codimension two subschemes. In particular, we show that o...
متن کاملGorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1997
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-97-03956-7